Main Article Content

Abstract

The interaction between business sectors in Central Kalimantan Province exhibits potential spatial dependence. Economic activities in one region can influence economic dynamics in other districts/cities. This study aims to cluster 17 business sectors to identify patterns of spatial dependence among districts/cities in the region. This research analyzed data from the 2022 Gross Regional Domestic Product (GRDP) at Constant Prices by business sector for each district/city in Central Kalimantan Province. The analysis was conducted using the Moran's Index and Local Indicators of Spatial Association (LISA) approach, employing the Queen Contiguity spatial weight matrix through the Geoda software. The results indicate that not all economic sectors exhibit significant spatial dependence. Out of the 17 sectors analyzed, 14 show patterns of spatial dependence among districts/cities. Meanwhile, the remaining sectors do not exhibit strong spatial relationships. These dependency patterns suggest the potential for economic influence across regions. This potential can be leveraged for more effective development strategies. By understanding the clustering of economic sectors with spatial linkages, this study contributes to formulating economic development strategies based on inter-district collaboration. These findings are expected to serve as a foundation for regional economic policy planning to promote more inclusive and sustainable growth in Central Kalimantan Province.

Keywords

Spatial Interaction; Clustering; Moran Index; LISA; Economic Development

Article Details

How to Cite
Hartandy, A., Haida, N., Haryadi, R., & Putra, D. (2025). Klasterisasi Lapangan Usaha Provinsi Kalimantan Tengah. Ecoplan, 8(1), 61-72. https://doi.org/10.20527/ecoplan.v8i1.1119

References

  1. Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  2. Anselin, L. (2005). Exploring Spatial Data with GeoDa: A Workbook. In Spatial Analysis Laboratory. Spatial Analysis Laboratory, University of Illinois.
  3. Cahyono, S. A., Falah, F., & Raharjo, S. A. S. (2020). Identifikasi Sektor Ekonomi Unggulan di Daerah Tangkapan Air Danau Rawa Pening. Jurnal Wilayah Dan Lingkungan, 8(1), 36–50. https://doi.org/10.14710/jwl.8.1.36-50
  4. Central Statistic Agency. (2017a). Analysis of Economic Census 2016 Listing Results of the Economic Potential of Gunung Mas Regency. BPS- Statistics of Gunung Mas Regency.
  5. Central Statistic Agency. (2017b). Analysis of Economic Census 2016 Listing Results of the Economic Potential of Kapuas Regency. BPS- Statistics of Kapuas Regency.
  6. Central Statistic Agency. (2017c). Analysis of Economic Census 2016 Listing Results of the Economic Potential of Kotawaringin Barat Regency. BPS- Statistics of Kotawaringin Barat Regency.
  7. Central Statistic Agency. (2017d). Analysis of Economic Census 2016 Listing Results of the Economic Potential of Kotawaringin Timur Regency. BPS- Statistics of Kotawaringin Timur Regency.
  8. Central Statistic Agency. (2017e). Analysis of Economic Census 2016 Listing Results of the Economic Potential of Seruyan Regency. BPS- Statistics of Seruyan Regency.
  9. Central Statistic Agency. (2017f). Analysis of Economic Census 2016 Listing Results of the Economic Potential of Sukamara Regency. BPS- Statistics of Sukamara Regency.
  10. Dabson, B., & Mcfarland, C. K. (2017). Collaborative Rural Development and Regional Economic Connectivity. https://www.stlouisfed.org/-/media/project/frbstl/stlouisfed/files/pdfs/community-development/investing-rural/13_dabson_mcfarland.pdf
  11. Darma Putra, E., & Pratiwi, M. C. Y. (2019). Identification of Leading Sector and Cluster Analysis of Regencies in Kalimantan. Economics Development Analysis Journal, 8(2), 224–243. https://doi.org/10.15294/edaj.v8i2.27237
  12. Fikri, M. T., & Fafurida, F. (2018). Sektor Unggulan dan Keterkaitan Spasial Ekonomi Antar Kabupaten/Kota di Jawa Tengah. Economics Development Analysis Journal, 7(3), 243–250. https://doi.org/10.15294/edaj.v7i3.25256
  13. Griffith, D. A., Chun, Y., & Li, B. (2019a). Spatial Econometrics and Spatial Statistics. Academic Press.
  14. Griffith, D. A., Chun, Y., & Li, B. (2019b). Spatial Regression Analysis Using Eigenvector Spatial Filtering. Academic Press.
  15. Igarta, K. R. R., & Handayani, F. (2020). Analisis Spasial Sektor Pariwisata di Provinsi Kalimantan Selatan. Jurnal Borneo Administrator, 16(1), 81–100. https://doi.org/10.24258/jba.v16i1.628
  16. Kamenetsky, M., Chi, G., Wang, D., & Zhu, J. (2019). Spatial Regression Analysis of Poverty in R. In Spatial Demography (Vol. 7, Issues 2–3). Springer International Publishing. https://doi.org/10.1007/s40980-019-00048-0
  17. Kharisma, B., Remi, S. S., Wardhana, A., Roseline, H., & Rosiyan, M. B. P. (2021). The Determination of Leading Sectors to Improve Bandung City’s Competitiveness. Economics Development Analysis Journal, 10(3), 270–285.
  18. Li, F., Wang, X., Liu, H., Li, X., Zhang, X., Sun, Y., & Wang, Y. (2018). Does economic development improve urban greening? Evidence from 289 cities in China using spatial regression models. Environmental Monitoring and Assessment, 190(9). https://doi.org/10.1007/s10661-018-6871-4
  19. Nijkamp, P. (2021). Gravitational Analysis in Regional Science and Spatial Economics: A Vector Gradient Approach to Trade. International Regional Science Review, 44(3), 400–431. https://doi.org/10.1177/0160017620980519
  20. Ord, J. K., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis, 27(4), 286–306. https://doi.org/https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  21. Pratama, A. D., Suparta, I. W., & Ratih, A. (2022). Spatial Autocolleration and Economic Convergence in Lampung Province. JEJAK, 15(1), 29–43. https://doi.org/10.15294/jejak.v15i1.34601
  22. Pratiwi, M. C. Y., & Kuncoro, M. (2016). Analysis of Growth Poles and Spatial Autocorrelation in Kalimantan: An Empirical Study of 55 Districts, 2000–2012. Jurnal Ekonomi Dan Pembangunan Indonesia, 16(2), 81–104. https://doi.org/10.21002/jepi.v16i2.574
  23. Putra, D. A. W., Rusda, D., & Aziz, A. (2020). Analisis Penentuan Pusat-Pusat Pertumbuhan (Growth Pole) dan Wilayah Belakang (Hinterland) Provinsi Kalimantan Tengah. Ecoplan, 3(2), 105–118. https://doi.org/10.20527/ecoplan.v3i2.161
  24. Putra, D. A. W., Rusda, D., & Aziz, A. (2021). Does Distance Blockade to Trade Interactions in Kalimantan Tengah Province ? Economics Development Analysis Journal, 10(3), 255–269. https://doi.org/10.15294/edaj.v10i3.43660
  25. Rico, M., Cantarero, S., & Puig, F. (2021). Regional disparities and spatial dependence of bankruptcy in spain. Mathematics, 9(9). https://doi.org/10.3390/math9090960
  26. Rivadeneira, M. F., Bassanesi, S. L., & Fuchs, S. C. (2018). Socioeconomic inequalities and measles immunization coverage in Ecuador: A spatial analysis. Vaccine, 36(35), 5251–5257. https://doi.org/10.1016/j.vaccine.2018.07.051
  27. Rusdarti, R., & Fafurida, F. (2016). Strategi Pengembangan Daerah Growth Pole melalui Pemanfaatan Potensi Lokal. Jurnal Ekonomi Dan Bisnis, 19(3), 425–440. https://doi.org/10.24914/jeb.v19i3.467
  28. Soebagyo, D., & Hascaryo, A. S. (2016). Leading Sectors 15 Countries-District in Central Java. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 17(1), 74. https://doi.org/10.23917/jep.v17i1.2087
  29. Southern African Development Community. (n.d.). Infrastructure Development in Support of Regional Integration. SADC. Retrieved March 6, 2025, from https://www.sadc.int/pillars/infrastructure-development-support-regional-integration
  30. Sukirno, S. (2015). Macroeconomic Theory Introduction (3rd ed.). Rajawali Pers.
  31. Todaro, M. P., & Smith, S. C. (2011). Economic Development (11th ed.). Erlangga.
  32. Wardhana, D., Ihle, R., & Heijman, W. (2017). Agro-clusters and Rural Poverty: A Spatial Perspective for West Java. Bulletin of Indonesian Economic Studies, 53(2), 161–186. https://doi.org/10.1080/00074918.2017.1298722
  33. Yin, Z., & Wu, J. (2021). Spatial dependence evaluation of agricultural technical efficiency—based on the stochastic frontier and spatial econometric model. Sustainability, 13(5), 1–12. https://doi.org/https://doi.org/10.3390/su13052708
  34. You, H., Zhou, D., Wu, S., Hu, X., & Bie, C. (2020). Social Deprivation and Rural Public Health in China: Exploring the Relationship Using Spatial Regression. Social Indicators Research, 147(3), 843–864. https://doi.org/10.1007/s11205-019-02183-z
  35. Yunitasari, D., & Firdaus, A. (2022). Analisis Spasial Keterkaitan Perekonomian Wilayah dan Pendapatan Daerah di Indonesia dan Filipina. Jurnal Bisnis Dan Manajemen, 16(1), 28–35.