Main Article Content


The financial sector has a major influence on economic growth in Indonesia. Good modeling influences the accuracy of economic growth predictions and has an impact on the financial sector. Several models have been introduced to analyze the relationship between the two, but it is necessary to test which of these models is most appropriate. This research aims to find the best model of the financial sector's influence on economic growth in Indonesia. Three models were compared so that the best model was selected, namely the Bayesian Vector Autocorrelation (BVAR), Linear Regression, and Pseudo Poisson Maximum Likelihood (PPML) models. The comparison method was carried out to determine the best model from the third model using various criteria, and then an in-depth study of the best model was carried out by considering various diagnostic tests and stability tests. The analysis results show that the BVAR (2) model is the best model among the three existing models. However, some specific analysis results in the regression analysis model (such as the negative impact on CPS) and the PPML model (such as the high R-square) can be taken into consideration by policyholders in the financial sector in determining policies related to these areas for economic growth.

Article Details

How to Cite
Sutrisno, H., & Nuryadin, M. (2024). Pemodelan Pengaruh Sektor Keuangan Terhadap Pertumbuhan Ekonomi Di Indonesia. Ecoplan, 7(1), 92-107.


  1. Adu, G., Marbuah, G., & Mensah, J. T. (2013). Financial Development and Economic Growth in Ghana: Does The Measure of Financial Development Matter? Review of Development Finance, 3(4), 192–203.
  2. Ang, J. B., & McKibbin, W. J. (2007). Financial Liberalization, Financial Sector Development and Growth: Evidence From Malaysia. Journal of Development Economics, 84(1), 215–233.
  3. Beck, T., Levine, R., & Loayza, N. (2000). Finance and the Sources of Growth. Journal of Financial Economics, 58(1–2), 261–300.
  4. Box, G. E. P., & Tjao, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley Publishing Company.
  5. Demetriades, P. O., & Hussein, K. A. (1996). Does Financial Development Cause Economic Growth? Time-Series Evidence From 16 Countries. Journal of Development Economics, 51(2), 387–411.
  6. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431.
  7. Dularif, M. (2010). Financial Development and Economic Growth: An Empirical Analysis of Indonesia. Jurnal BPPK: Badan Pendidikan Dan Pelatihan Keuangan, 1(1), 94–131.
  8. Ghozali, I. (2018). Aplikasi Analisis Multivariate dengan IBM SPSS 25. Badan Penerbit Universitas Diponegoro.
  9. Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo Maximum Likelihood Methods: Theory. Econometrica, 52(3), 681–700.
  10. Gunawan, F. B. (2019). Hubungan Kausalitas Antara Sektor Keuangan Dan Sektor Riil di Indonesia. Jurnal Akuntansi Maranatha, 11(1), 44–60.
  11. Israel, T. O. M., Kingdom, N., Yvonne, D. A., & Ike, W. A. (2023). Application of Bayesian Vector Autoregressive Models in the Analysis of Quasi Money and Money Supply: A Case Study of Nigeria. Asian Journal of Probability and Statistics, 25(3), 108–117.
  12. Kennedy, P. (2008). A Guide to Econometrics. MIT Press.
  13. King, R. G., & Levine, R. (1993). Finance and Growth: Schumpeter Might Be Right. The Quarterly Journal of Economics, 108(3), 717–737.
  14. Kirchgässner, G., & Wolters, J. (2007). Introduction and Basics. In Introduction to Modern Time Series Analysis (pp. 1–25). Springer Berlin Heidelberg.
  15. Koop, G., & Korobilis, D. (2010). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends in Econometrics, 3(4), 267–358.
  16. Kyophilavong, P., Shahbaz, M., & Salah, U. G. (2014). A Note on Nominal and Real Devaluation in Laos. MPRA Paper.
  17. Levine, R. (1991). Stock Markets, Growth, and Tax Policy. The Journal of Finance, 46(4), 1445–1465.
  18. Motta, V. (2019). Estimating Poisson Pseudo-Maximum-Likelihood Rather Than Log-Linear Model of A Log-Transformed Dependent Variable. RAUSP Management Journal, 54(4), 508–518.
  19. Pagano, M. (1993). Financial Markets and Growth: An Overview. European Economic Review, 37(2–3), 613–622.
  20. Saudah, S., & Nuryadin, M. R. (2022). Pengaruh Indikator Sektor Keuangan (DPK, Kredit dan Investasi) terhadap Pertumbuhan Ekonomi di Provinsi Kalimantan Selatan. JIEP: Jurnal Ilmu Ekonomi Dan Pembangunan, 5(1), 338–353.
  21. Schumpeter, J. A. (1934). The Theory of Economic Development: An Inquiry Into Profits, Capital, Credit, Interest, and The Business Cycle. Harvard University.
  22. Sehrawat, M., & Giri, A. K. (2018). The Impact of Financial Development, Economic Growth, Income Inequality on Poverty: Evidence From India. Empirical Economics, 55(4), 1585–1602.
  23. Silva, J. M. C. S., & Tenreyro, S. (2015). PPML: Stata Module to Perform Poisson Pseudo-Maximum Likelihood Estimation. Statistical Software Components.
  24. Sutrisno, H., & Nuryadin, M. R. (2023). Peranan Contagion Effect pada Krisis Mata Uang di Indonesia. Ecoplan, 6(1), 56–69.
  25. Sutrisno, H., Sari, D. W., & Handoyo, R. D. (2021). Vulnerability Analysis of Macroeconomic Indicators for Early Detection of Currency Crisis: Case Study of Indonesian Economy on 1991–2019. Journal of International Commerce, Economics and Policy (JICEP), 12(2), 2150006.
  26. Sutrisno, H., Wulansari, D., & Handoyo, R. D. (2022). Macroeconomic Indicators as A Signal of The Currency Crisis in The Indonesian Economy. International Journal of Economics and Management, 16(1), 1–20.

Most read articles by the same author(s)